
electron and hole current density vectors; A, coefficient of asymmetry in narrowing; AVg, 
total narrowing of the forbidden bandwidth; y., y_, degree of electron and hold degeneration: 
~T, temperature potential; #n, #-, electron a~d h~le Fermi quasilevels; n~., n~n , effective 
proper electron and hole concentrations equal to niY n exp (AAV~/~T) and n[~_ ex~ [(i ~ A)i 
AVg/~T], respectively; R~ excess of the recombination velocity gbove the generation velocity; 
~; dielectzic permittivity of the material; Bi,j, value of the variable B at the node of the 
spatial discretization mesh with the subscripts i, j; 16~*Imax, maximal value of {l~i ~I} in 
the first Newton iteration; Vi, Ve, Vb, Vc, ohmic contact potentials of the injector, elitter, 
base, and collector, respectively; and Nit, number of complete iterations of the method. 
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HEAT AND MASS TRANSFER IN SKIN FORMATION 

N. I. Nikitenko and Yu. N. Kol'chik UDC 536.24 

A mathematical model of the heat conduction and diffusion on heating an oxidizing 
metal is presented, together with a numerical method of calculation. 

On heating ingots and semifinished articles in furnaces, their outer surface is oxidized, 
which leads to significant loss of material. The skin layer formed on oxidation has relative- 
ly low heat conduction and a high specific volume, and consequently this layer appears as a 
heat-insulating coating [1-3], which must be taken into account in optimizing the heating of 
metallic bodies. 

It has been established that, in the skin layer, diffusion of metal to the outer surface 
occurs, and it is mainly oxidized at this surface [4]. The concentration distribution of the 
components in the oxide has apparently not previously been considered. Skin formation on 
heating a body of arbitrary form may be described mathematically as~follows. Suppose that W~ 
and W~ are regions of space (x, y, z) occupied by the metal and its skin; F, is the boundary 
between the metal and the skin; F~ is the external boundary of the skin; t~ and t= are temp- 
erature functions for the metal and the skin; C is the concentration of unoxidized metal in 
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the skin. The regions W~ and Wa in the space (x, y, z x), where 0 < z < ~r, correspond to  
c y l i n d e r s  R: = {W: • [0, Xcr]} and R 2 = {Wa • [0, Xcr]~ w i t h  s u r f a c e s  F, = t r~  • [0,  Zcr]}  and 
Fa = {re • [0, Zcr]}. A heat conduction equation holds for the metal and skin 

Ors = div(~:grad@@ ~i, (x, y, z, T)C R~, ] = 1, 2. (i) csPJ d---~ 

Here c~ and k= are the specific heat and thermal conductivity; 0a is the density; H. is the d 
power of the ~eat sources. The concentration C of metal in the ~kin is described b~ the dif- 
fusion equation 

OC 
= div (D grad C) + H~, (x, y, z, ~)ER2, (2) & 

where ~M is the density function of mass sinks of unoxidlzed metal in the skin. 

For the initial instant (T = 0), values of the functions are specified 

tj(x, y, z, O) lie(x, y, z), C(x, V, z, O)=Co(x, V, -~ 

Fj(x, g, z, O)= Fso(x, y, z). (3) 

At the metal--skin boundary F, 

t l ( P 1 ) = t 2 ( P I ) = T  , (4) 

~ Ot~(P~) ~2 0t2(P~)_ HD OC(P1) (5) 

dv Ov 91 8v ' 

v (PO--  D ac(P~____~), (6) 
Pl OV 

c ( P o  = Cs (r). (7) 

Here Px is a point belonging to the surface Fx; H is the specific heat of phase transition of 
the metal in the skin; v is the component of the velocity vector of a boundary point P, along 
the normal v; C S is a specified function of the temperature. 

At the external boundary, the following conditions hold 

~ 012 (P~) os [t~ t 4 (Pz)] 4- ~ [/c to (P2)] q- H2D OC (P2) 
- -  - -- 2 . -- - - ; (8) 

Ov dv 

D OC(P2) ~% , pz~F2. (9) 
C(Pz)= 0; v2(P2)-- 9z Ov ~q 

Here o = 5.67.10 -e W/moK4; Ha is the heat of chemical transformation of i kg of metal in the 
skin; v= is the component of the velocity vector of boundary point P= along the normal v. The 
condition in Eq. (9) holds when the rate of chemical reaction of the metal with atmospheric 
oxygen at the external boundary of the skin is sufficiently large. Otherwise, Eq. (9) may be 
replaced by a condition of the form 

D OC(P2)- -B~exp(  ~ ) 
& t~-(-p~) ' 

where Ba and ~a are constants characterizing the rate of this chemical reaction. 

In the skin layer, as well as diffusion of the metal to the external surface, there may 
be diffusion of oxygen to the metal--skin interface. In this case, the concentration function 
of oxygen at internal points of the skin satisfies a diffusion equation analogous to Eq. (2). 
On account of chemical reaction of the metal and oxygen inside the skin, the source terms HM 
in Eq. (2) and H k in the diffusion equation for oxygen and also in heat-conduction Eq. (I) 
for the skin layer are nonzero. They are functions of the metal and oxygen concentrations 
and also of the temperatu=e. 

There has been insufficient study of the transition of metal atoms to the skin. Accord- 
ing to experimental data [4], the velocity of motion of the metal boundary on account of ox- 
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idation is inversely proportional to the thickness of the skin layer L and is often written 
in the form [i, 5-7] 

. . . .  - - + - 1 .  (io) L 

The velocity v is relatively small and, taking into account Eq. (9), may be expressed 
approximately in terms of the concentration as the metal--skln boundary 

D OC(PI) D C ( P t ) - -  C (Pa) D C(PO 

91 dx 9i L p, L 

I t  follows from Eqs. (lO) and (ii) t h a t  

(il) 

D 

i.e., the concentration is a function of the temperature. In accordance with this, the ex- 
ponential temperature dependence of the concentration C(P,) may be explained on the basis of 
the Clapeyron-Clausius equation or the Arrhenius law. 

Investigating skin formation on the basis of the given mathematical model entails solving 
the heat- and mass-transfer problem in a system with moving boundaries [8]. The peculiarity 
of this problem is the significant change in density of the material in the chemical trans- 
formation of the metal in the skin. In [7], an algorithm was proposed for numerical solution 
of the problem of skin formation on a plane plate, disregarding the density change on trans- 
formation of metal in the skin and the accompanying dlffusional process, on the basis of an 
implicit scheme with a relatively low order of approximation O(bx + hz + hr/Ax). 

Without any simplifying assumptions, Eqs. (i)-(ii) may be solved on the basis of a dif- 
ference method with explicit separation of the phase boundaries [9] and the use of a three- 
layer difference scheme [i0]. This difference scheme is distinguished by simplicity, which is 
characteristic of explicit difference schemes, and is also no less economical than implicit 
schemes for the solution of systems of parabolic equations realized by matrix fitting. 

An algorithm for calculating heat and mass transfer in skin formation for a plane plate 
of thickness 2X is outlined below. In connection with the significaht difference in density 
of the metal and skin, the approximate values t~ of the temperature tt(xi, ~n) in the'metal 
and t~ and C n of the skin temperature ta(X , ~_~ and concentration C(x , ~) of the metal in 

m m " m - 
the s~in layer are determined in autonomous difference schemes 

Tn = nAx, n = ( J ,  1 . . . . . .  A~----con~t; x~ = iAx~, i = O, 1 . . . . .  I ' ~ - 1 ,  

n n 
x7 = X T ,  X1 - -  X z - i  < A l l ,  Ax~ = c o n s t ;  

n t l  
xm = m a x 2 ,  m = 0,  1 . . . . .  M "  - -  1, x,u = X2 ,  Ax2 = c o n s t .  

Here the integers I n and M n are determined from the conditions 

O <  X'~--( l .  n - -  1 ) A x l < A x , ,  O < X ' ~ - - ( M  n -  1)Ax2<x2. 

The difference scheme for solving this problem of skin formation takes the form 

t ~  t ~ Cm=Co(x,.); X~=X; X ~ M ~  

92~1 

(13) 

(14) 

6,l~ '~ (1 -]- 0j) -- 6,t~ -1 0 1  - - -  
1 

6~()@xt~), i = O ,  1 . . . . .  I " - - 2 ;  
c~9~ 

fi , t '~ - -  1 6 x ( ~ . ~ x t ~ + I ) ,  i = I n. 1; 
c19~ 

(15) 

(16) 

( l  + 0~) 65% - -  0285~ -~ = 1 ,  ~(B.8~t;~,), m =  O. 1 . . . . .  M . . . .  2; 
c~p~ 

(17) 
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_ ~ n+l = Aqn __ _ 6J,'~ --  1 6~ ()~Sfl, ,~), m 1 H X~ > 2Ax,,; 
c~p2 

(1 + 0~) GC;~ - -  0aGC,~ -~ = 8.,: (D6~C,~0, m = 1, 2 . . . . .  M '~ - -  2; 

~+  1 = A4 n 6~C~ = 6~ (DSxC., ); m - -  1; 

Cg +~ /3exp(  I 5 ], c.,~+1 
4n-i- 1 

t~+~ '~+~ 

~2 x~M ' = - -  , 

(18) 

(19) 

(20)  

(21)  

(22)  

(23)  

I n + l  = 

M n +  1 =-  

I n w h e n - - - - H §  1 > 0 ,  
AXl 

X?+ ~ I n - l w h e n  - - - - I " §  1 ~ 0 ,  
Ax~ 

M n when X ~ + - - 1  M ~ + 1 > O, 
Ax2 

X ~  @1 
M'-}-  1 when - - - - M " §  1 ~ 0 ;  

Ax~ 

x n +  1 2 - -  t r t A x 2  
r i = t  n-~l - -  \tt n4-1m - -  t ~ - - - 1 )  X n-~12 - -  ( m - -  1 ) a X e  

M ~+t M " +  1. w h e n  tn  = 

(24) 

Here the initial values of the functions tlo, tao, Co, X, Xo and also the physical character- 
istics of the bodies 0~, 0a, c~, ca, %~, Xa, ~, ~a, B, 8, H, Ha, o, r D are assumed to be 
specified: 0. > 0, j = i, 2, 3; 

3 

8xC~ = C ~ - -  C~ whenX~>Ax% 6xC'~-- C~u--C~ w h e n X ~ < A x 2 ;  
Ax2 X~ 

GC~ = C~ - -  C;~_, when X~ ~> Ax2, 
X~--(M ~ -  1) Ax~ 

n tl CM- Co 
~)xCM = when X2 < Ax2; 

x~ 
qOn 2-1 n 

6~p ~ -  - -q)  , q)= X1, X2, ti, G ,  CG 
AT 

n ] n n n n [~t~ n n - - I  
G(gGwj ) - 2Ax$ [(L+, + ~ ) (t;+, - - t ;  )--,~, + ; j _ , ) ( t 7 - #  )1, 

Ax v 

eP7+1--~7+~ ], ~ Xx, Xz, D; j i, m; y 1, 2: 

A~ = X~ +~ -- (I" -- 1) Ax~ when ~p; = L'-~; 

AG X n+~ = 2 -- (M n -  1)Ax~ when%, = tM-I, C~u-i. 

(25) 

The stability conditions for Eqs. (15), (17), and (19) 
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A.c~min{C~92(l+202) 1+20~  } 
23.2Ax ~ ' 2DAx~ ' ] =- 1, 2, 

allow any dlfference-schema step to be chosen by varying the parameter 9, as for implicit dif- 
ference equations; however, since the approximation error of Eqs. (15), (17), and (19) is of 
order 0(Ax~ + Az~$tlt ~tinexpedient to choose a step that is too !arge. The values of the 
grid functions t~ , t m for the initial instant (n = 0) are determined from the relation 

~ o ~ - ~  = O o ( ~ o ) ,  ~ ~ ti, t~, C~, 0 ~ 0 o ~ 1 .  (26~ 

Note that 0o has a pronounced influence on the value of the grid function only for the first 
few time steps. The solution of Eqs. (12)-(23) is undertaken as follows. Initially (n = 0), 
the values of the grid functions t~, t o , C o , X~, X~ are specified, The initial temperature 

�9 �9 om m 
t~ of a metallic plate of thlckness X: fed into a furnace may be regarded as close. The skin 
t~Ickness X~ is close to zero here. In connection with this, without increasing the order of 
error of the differmnce-scheme approximation, it may be supposed that X~ = Axe, where y > 1 
and M ~ = i. The concentrations Cg and C~ are determined from Eq. (21), and the temperature 
of . . n n : t M rom Eq. (23), under, the. con~itlon tNat t M = t.. when n + 1 = 0. Assume that the values 
of the grid functions t~, t K, C K, X~, X~, k = l, ~, . , n have already been found, and their 

" m ' "" fi+~ n ~ t  
values for the layer n + 1 must~e determined. First, the values of X~ and X2 are calcu- 
lated from Eq. (14). Then, the grid function t~ +a is found from Eq. (15) at the internal grid 
points i = I, 2 , ..., I n -- 2, which at times r_ are at a distance of no_less than the steo dx~ 
f n rom the boundary surfaces Xj(j = I, 2). Analogously, the functions t n*x and cn*Xare found 
from Eqs. (17) and (19), when m = i, 2, ..., M n- 2. The parameters e~(j = i, ~, 3) appearing 
in difference Eqs. (15), (17), and (19) are then determined. First, f~r each of these equa- 
tions, the maximum permissible (according to the stability condition) time step AT= when 0. = 
0 is calculated (for the case of an ordinary two-layer explicit difference equation) 3 

ATt = Ax~c,9~ , AT~ Ax~c~p~ , AT~ = Ax~ 
2~ 2~ 2D 

The final value of the time step Az is determined in terms of the m~nlmal A~mi n of the ste~s 
ATj, j = I, 2,~i3 from the relation 

AT : ATmin(1-t-20), 

where 8 is the maximum value of 0j according to the condition that the error of the solution 
be within acceptable limits. Thanks to the significant difference in linear dimensions of the 
metal and the skin and also the monotonic dependence of the temperature on the coordinates and 
time, the error of the solution varies insignificantly up to e = 50, which corresponds to a 
100-fold increase in the time step in comparison with the usualexplicit scheme. The final 
values of e. are found from the condition 

3 
0 when AT~.~ ATj, 

0j = (AT-- ATi)/(2 • AT j) when AT ~ ATj, 

which ensures stability of the solution of the corresponding difference equation. 

The temperatures at boundary and adjacent points are determined as follows, n~? the ini- 
tial stage, when the skin thickness X~ _< 2Ax=, the temperatures t~_, Ll~n~t, and" t M are found 
by simultaneous solution of Eqs. (16), (22), and (23), under the assumption tha~ the tempera- 

. . . n l  
tu~e changes llnearly in the skin layer. According to this hypothesls, when X2 > Ax2 and 
X~ ~I > 2Axe, the temperature tn ~z at the grid points m = i and m = 2 is calculated from Eq. 

m n > n~l n~1 
(25). With a thickness of tb~ skin layer X~'_ 2Axe, =he temperatures t I , ~nd t~ are found 

�9 ~ n n~1 n - n~1 
from Ess. (16) and (22) xf I = I . If I = I + i, the temperature t i at the point 

n l  i = I -- 1 is determined from Eq. (15), and Eq. (2~) is used to find t~ +~. 

n+t _n+t when X~ > 2Axe are calculated from Eqs (18) and (23) The temperatures tMn ~ and =Mn_~ . . 

If M n+1 = Mn + i, the temperature at the newly formed point m = Mn + i is determined by lln- 
ear interpolation with respect to Eq. (25). 

The calculation results for heating and skin formation with the following initial data 
are shown in Figs. 1 and 2 [3]: At = 29.1 W/m.K; c: = 0.69 kJ/kg,K; 0~ = 7500 kg/m3; %= = 
0.872 W/m.K; ca = 1.047 kJ/kg.K; 0a = 4000 kg/mS; X = 0.397 m; o = 5.67.10 -e W/m=.K~; e = i; 
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Fig. I. Variation in quantities characterizing the heating of an ingot: i) furnace 
temperature; 2-4) temperatures at the external skin surface, at the metal-skin con- 
tact boundary, and at the center of the ingot; 5) concentration C of unoxidized me- 
tal in skin close to the metal--skin contact boundary; 6) thickness L of skin layer. 
t, 10S~ C, I0 -2 kg/m'~ L, cm; T, h. 

Fig. 2. Temperature distribution over the thickness of the ingot (i, i') and the 
skin (2, 2') and the concentration distribution of unoxldized metal over the skin 
thickness (3, 3'); the continuous curves correspond to the end of heating T = 20.024 
and the dashed curves to T = i0 h. 

BD = 0.38 m~/h; b = 1.8"10 ~ K; ~ = 0; D = 0.2"i0 -~ m/sec. The dimensionless quantity x in 
Fig. 2 determines the position of the point in the metal layer (x = x/X,) or skin (x = (x -- 
XI)/(X= -- X:)). The temperature of the surrounding medium to, K (furnace temperature) varies 
over time T, h, according to the law 

te = { 1173+40~ when T<t0 ,  
1573 when x>10.  

The duration of heating rcr is defined as the minimum time for which the following condition 
is satisfied [3] 

l X 
min/l(x, Ter )>  1513, - - ~ - . I t l ( x ,  ~er)dx>/1523 K. 

0 

In [3], diffusion processes in skin formation were not considered and no account was 
taken of the significant difference in velocities of the external and internal skin boundar- 
ies. On taking account of these factors, the theoretical heating time of the semifinished 
product is increased from 19.3 to 20.04 h. Reducing the diffusion coefficient D, while B 
and 8 remain unchanged, leads to increase in the concentration C(X~). 

Note, in conclusion, that the method of calculation here developed is relatively simple, 
it requires little computer time for its realization, and it allows the influence of various 
factors on the heating of ingots to be taken more accurately into account. This latter at- 
tribute is necessary for optimization of the heating and elucidation of the laws of skin 
formation. 

NOTATION 

x, y, z, spatial coordinates; T~ time; k~ c, 0, thermal conductivity, specific heat, 
density; t, temperature; H, ~M' density of heat and mass sources; D, diffusion coefficient~ 
~, Stefan--Boltzmann constant; e, emissivity of skin surface; tc, ambient temperatures; v, 
velocity of metal-boundary motion due to oxidation; X, thickness of layer of material; e, 
heat-transfer coefficient; ~, molecular weight, Indices: j = i, j = 2, quantities relating 
to metal and skin; n, number of grid points with respect to time; i and m, number of grid 
points over the spatial coordinate in the metal layer and the skin. 
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